GPU container access
Leveraging GPU capabilities within a Podman container provides a powerful and efficient method for running GPU-accelerated workloads. Below are instructions on how to get started setting up your OS to utilize the GPU.
- Windows
- macOS (Silicon)
- Linux
Prerequisites
- NVIDIA Graphics Card (Pascal or later)
- WSL2 (Hyper-V is not supported)
Procedure
-
The most up-to-date NVIDIA GPU Driver will support WSL 2. You are not required to download anything else on your host machine for your NVIDIA card.
-
Verify that WSL2 was installed when installing Podman Desktop.
-
Install NVIDIA Container Toolkit onto the Podman Machine:
Podman Machine requires the NVIDIA Container Toolkit to be installed.
This can be installed by following the official NVIDIA guide or running the steps below:
SSH into the Podman Machine:
$ podman machine ssh
Run the following commands on the Podman Machine, not the host system:
$ curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo | \
sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo && \
sudo yum install -y nvidia-container-toolkit && \
sudo nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml && \
nvidia-ctk cdi list
Verification
To verify that containers created can access the GPU, you can use nvidia-smi
from within a container with NVIDIA drivers installed.
Run the following official NVIDIA container on your host machine:
$ podman run --rm --device nvidia.com/gpu=all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
Example output:
PS C:\Users\admin> podman run --rm --device nvidia.com/gpu=all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
Fri Aug 16 18:58:14 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 545.36 Driver Version: 546.33 CUDA Version: 12.3 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 3060 On | 00000000:07:00.0 On | N/A |
| 0% 34C P8 20W / 170W | 886MiB / 12288MiB | 1% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 33 G /Xwayland N/A |
+---------------------------------------------------------------------------------------+
Additional resources
Prerequisites
- macOS Silicon (M1 or later)
Procedure
Important to note that using the "Metal" GPU on macOS utilizes specialized software to achieve this. Specifically a virtualized GPU from within the Podman Machine that provides translation support from Vulkan and MoltenVK calls to MSL (Metal Shading Language), Apples GPU.
- Create a Podman Machine that uses
libkrun
:
Verification
Using the GPU functionality requires a specialized Containerfile containing a patched MESA driver.
- Create the following Containerfile:
FROM fedora:40
USER 0
# Install the patched mesa-krunkit drivers
RUN dnf -y install \
dnf-plugins-core \
dnf -y copr enable slp/mesa-krunkit && \
dnf -y install mesa-vulkan-drivers vulkan-loader-devel vulkan-headers vulkan-tools vulkan-loader && \
dnf clean all
- Build the image:
- Verify you can see the GPU by running a test container:
$ podman run --rm -it --device /dev/dri --name gpu-info quay.io/slopezpa/fedora-vgpu vulkaninfo | grep "GPU"
Example output:
$ podman run --rm -it --device /dev/dri --name gpu-info quay.io/slopezpa/fedora-vgpu vulkaninfo | grep "GPU"
GPU id = 0 (Virtio-GPU Venus (Apple M1 Pro))
GPU id = 1 (llvmpipe (LLVM 17.0.6, 128 bits))
GPU0:
deviceType = PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU
deviceName = Virtio-GPU Venus (Apple M1 Pro)
GPU1:
Additional resources
Important note that the virtualized GPU (Virtio-GPU Venus (Apple M1 Pro)) only supports vulkan compute shaders, not rendering / draw. For more information on the available GPU features, see vulkaninfo
from within the container.
Prerequisites
- NVIDIA Graphics Card (Pascal or later)
Procedure
- Install the latest NVIDIA GPU Driver for your OS.
- Follow the instructions on installing the NVIDIA Container Toolkit in relation to your Linux distribution.
- Generate the CDI Specification file for Podman:
This file is saved either to /etc/cdi or /var/run/cdi on your Linux distribution and is used for Podman to detect your GPU(s).
Generate the CDI file:
$ nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml
Check the list of generated devices:
$ nvidia-ctk cdi list
More information as well as troubleshooting tips can be found on the official NVIDIA CDI guide.
Verification
To verify that containers created can access the GPU, you can use nvidia-smi
from within a container with NVIDIA drivers installed.
Run the following official NVIDIA container on your host machine:
$ podman run --rm --device nvidia.com/gpu=all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi